Kumpulan Soal Menentukan Penyelesaian Dari Sistem Persamaan Linear Dua Variabel

Kumpulan Soal Menentukan Penyelesaian Dari Sistem Persamaan Linear Dua Variabel

metode untuk menentukan himpunan penyelesaian dari sistem persamaan linear dua variabel kecuali

Daftar Isi

1. metode untuk menentukan himpunan penyelesaian dari sistem persamaan linear dua variabel kecuali


Untuk mencari himpunan penyelesaian dari SPLDV adalah sebagai berikut.

Ubahlah salah satu persamaan ke dalam bentuk x = ... atau y = ...

Masukkan (substitusi) nilai x atau y yang diperoleh ke dalam persamaan yang kedua

Nilai x atau y yang diperoleh kemudian disubstitusikan ke dalam salah satu persamaan untuk memperoleh nilai variabel lainnya yang belum diketahui (x atau y).

Semoga bermanfaat ya.

2. luliskan 4 cara menentukan penyelesaian atauakar dari sistem persamaan linear duaVariabel​


Penjelasan dengan langkah-langkah:

4 cara yaitu

metode eliminasi

metode substitusi

metode grafik

metode campuran(eliminasi dan substitusi)


3. dua contoh soal tentang sistem persamaan linear dua variabel beserta penyelesaiannya


semoga dapat membantu...

4. 1. x + 2y + 1 =0 adalah contoh dari....a. pertidaksamaan linear dua variabelb. persamaan linear tiga variabelc. persamaan linear dua variabeld. persamaan kuadrate. pertidaksamaan linear tiga variabel2. x² + 2y + 1 =0 adalah contoh dari...a. pertidaksamaan linear dua variabelb. persamaan linear tiga variabelc. persamaan linear dua variabeld. persamaan kuadrate. pertidaksamaan linear tiga variabel3. suatu sistem/kumpulan dua persamaan linear dua variabel berpangkat dua dan saling berkaitan sehingga terdapat satu penyelesaian disebut....a. sistem pertidaksamaan linear dua variabelb. sistem persamaan linear tiga variabelc. sistem persamaan linear dua variabeld. sistem persamaan kuadrate. sistem pertidaksamaan linear tiga variabel​


Jawaban:

1. c. persamaan linear dua variabel

2. c. persamaan linear dua variabel

3. c. sistem persamaan linear dua variabel

Penjelasan dengan langkah-langkah:

1. x + 2y + 1 =0 adalah contoh dari....

a. pertidaksamaan linear dua variabel

b. persamaan linear tiga variabel

c. persamaan linear dua variabel

d. persamaan kuadrat

e. pertidaksamaan linear tiga variabel

2. x² + 2y + 1 =0 adalah contoh dari...

a. pertidaksamaan linear dua variabel

b. persamaan linear tiga variabel

c. persamaan linear dua variabel

d. persamaan kuadrat

e. pertidaksamaan linear tiga variabel

3. suatu sistem/kumpulan dua persamaan linear dua variabel berpangkat dua dan saling berkaitan sehingga terdapat satu penyelesaian disebut....

a. sistem pertidaksamaan linear dua variabel

b. sistem persamaan linear tiga variabel

c. sistem persamaan linear dua variabel

d. sistem persamaan kuadrat

e. sistem pertidaksamaan linear tiga variabel

Tolong Jadikan Jawaban Tercerdas


5. Tentukan selesaian dari sistem persamaan linear dua variabel berikut


Jawaban:

Tentukan selesaian dari sistem persamaan linear dua variabel berikut: -2x + y = 1,3 2(0,5x - y) = 4,6


6. Diberikan sistem persamaan linear dua variabel 3x -y=10 X-2y=0 Tentukan selesaian dari sistem persamaan linear dua variabel di atas


Penjelasan dengan langkah-langkah:

3x - y = 10

-y=10-3x

y= 3x-10 ..... (1)

substitusi pers(1)

x - 2y = 0

x - 2(3x-10) = 0

x - 6x + 20 = 0

-5x = -20

x = 4

substitusi nilai x=4 ke pers(1)

y = 3(4)-10

y = 2


7. plis besok di kumpul.. minta tollong ya yang bisadiselesaikan dengan sistem persamaan non linear dua variabel.


X = 7/15, Y = 7/4
Semoga membantu ya :)

8. Menentukan daerah himpunan penyeleasaian sistem pertidaksamaan dua variabel linear-kuadrat Tentukan daerah penyelesaian dari sistem pertidaksamaan dua variabel linear-kuadrat dari 2x ≥ 3y +6 ​



PErTidakSAmaan

daerah   dari
2x≤ 3y +  6  

i.  lukis garis  2x =  3y + 6
titik potong sb x ,  y = 0
2x = 6
x=  3 --->  A(3, 0)

titikpotong sb y, x = 0
0 =  3y+ 6
y= - 2 ---> B(0, - 2)

lukis  garis  dari A ke B (tidak terputus) sbg  garis 2x= 3y + 6

ii)  daerah penyelesaian 2x≤ 3y +  6   adalah
dari garis AB (tidak  terputus) arsir menjauhi  (0.0)
lihat gambar


9. apa yang kalian butuhkan ketika membuat tabel untuk menentukan selesaian persamaan linear dua variabelkak tolong ini pagi ini di kumpul​


Jawaban:

pertama kita menentukan kedua titik sumbu yaitu x dan y ketika kita ingin mencari titik potong x maka syarat y = 0 begitu juga jika kita ingin mencari titik potong y syarat x = 0


10. cara menyelesaikan sistem persamaan linear dua variabel


Kelas : 10
Mapel : Matematika
Kategori : Sistem Persamaan Linier
Kata Kunci : sistem persamaan linear, dua variabel, tiga variabel, penyelesaian
Kode : 10.2.3 [Kelas 10 Matematika KTSP - Bab 3 Sistem Persamaan Linier]

Pembahasan :
Bentuk umum sistem persamaan linear dua variabel
ax + by = p
cx + dy = q
a, b, c, d ≠ 0 serta a, b, c, d, p, q ∈ R.

Penyelesaian dari sistem persamaan linear dua variabel adalah pasangan terurut (x₁, y₁).

Ada 3 kasus dalam sistem persamaan linear dua variabel, yaitu :
1. Jika [tex] \frac{a}{c} [/tex] ≠ [tex] \frac{b}{d} [/tex] dan kedua garis tersebut berpotongan, maka sistem persamaan linear dua variabel tersebut memiliki satu penyelesaian.
2. Jika [tex] \frac{a}{c} [/tex] = [tex] \frac{b}{d} [/tex] ≠ [tex] \frac{p}{q} [/tex] dan kedua garis tersebut sejajar, maka sistem persamaan linear dua variabel tersebut tidak memiliki penyelesaian.
3. Jika [tex] \frac{a}{c} [/tex] = [tex] \frac{b}{d} [/tex] = [tex] \frac{p}{q} [/tex] dan a, b, c, d, p, dan q tidak semuanya nol serta kedua garis tersebut berhimpit, maka sistem persamaan linear dua variabel tersebut memiliki tak hingga banyak penyelesaian.

Metode penyelesaiannya ada 4, yaitu :
1. metode grafik;
2. metode substitusi;
3. metode eliminasi;
4. metode gabungan eliminasi dan substitusi.


Contoh : https://brainly.co.id/tugas/8925999


Bentuk umum sistem persamaan linier tiga variabel

a₁₁x + a₁₂y + a₁₃z = p,
a₂₁x + a₂₂y + a₂₃z = q,
a₃₁x + a₃₂y + a₃₃z = r,
dengan a₁₁, a₁₂, a₁₃, a₂₁, a₂₂, a₂₃, a₃₁, a₃₂, a₃₃ dinamakan koefisien-koefisien dari variabel-variabel x, y, dan z, serta p, q, dan r dinamakan konstanta serta a₁₁, a₁₂, a₁₃, a₂₁, a₂₂, a₂₃, a₃₁, a₃₂, dan a₃₃ ≠ 0 serta a₁₁, a₁₂, a₁₃, a₂₁, a₂₂, a₂₃, a₃₁, a₃₂, a₃₃, p, q, dan r ∈ R.

Penyelesaian dari sistem persamaan linear dengan tiga variabel adalah menentukan pasangan terurut (x₀, y₀, z₀) yang merupakan penyelesaian dari sistem persamaan linear dengan tiga variabel.

Metode penyelesaiannya ada 3, yaitu :
1. metode eliminasi;
2. metode substitusi;
3. metode gabungan eliminasi dan substitusi.

Contoh : https://brainly.co.id/tugas/1597315


Semangat!


Stop Copy Paste!


11. tentukan himpunan penyelesaian dari sistem persamaan linear dua variabel


semoga bermanfaat okeeeee

12. Kak bantu materi ==> MENYELESAIKAN SISTEM PERSAMAANNONLINEAR DUA VARIABEL DENGANMENGUBAH KE BENTUK SISTEMPERSAMAAN LINEAR DUA VARIABELIni soalnya :Tentukan penyelesaian dari sistem persamaanberikut.No. 2 dan 3


Materi : SPLDV





No. 2
misalkan
m = 1/x 
n = 1/y
maka sistem dapat ditulis
2m + 3n = 12         |x1|     2m + 3n = 12 
3m - n = 7              |x3|     9m - 3n = 21
                                     ------------------------ (+)
                                          11m == 33
                                              m = 3
3m - n = 7
3(3) - n = 7
9 - n = 7
n = 2

m = 3 
1/x = 3
x = 1/3

n = 2
1/y = 2
y = 1/2

jadi HP : {(1/3 , 1/2)}

----------------------------------------------------------

No. 3
misalkan 
m = √x
n = √y
maka sistem dapat ditulis
m + n = 4
2m - n = 3
---------------- (+)
3m = 7
m = 7/3

m + n = 4
7/3 + n = 4
n = 12/3 - 7/3
n = 5/3

m = 7/3
√x = 7/3
x = 49/9

n = 5/3
√y = 5/3
y = 25/9Sistem Persamaan Non Linear 

2||

misal,
1/x = a
1/y = b

model persamaan menjadi,

2a + 3b = 12
3a  -  b  = 7


Eliminasi

2a + 3b = 12   |x1| 2a + 3b = 12
3a  -  b  = 7     |x3| 9a - 3b  = 21
---------------- +       -----------------  +
                                    11a = 33
                                        a = 3

Subtitusi

    3a - b = 7
3 (3) - b = 7
     9 - b = 7
        - b = 7 - 9
        - b = -2       (x-1)
          b = 2


misal,

1/x = a
1/x = 3/1    (kali silang)
 3x = 1
   x = 1/3

1/y = b
1/y = 2/1    (kali silang)
 2y = 1
   y = 1/2

HP = {x , y}
      = (1/3 , 1/2)

3||

misal,

√x = a
√y = b


model persamaan menjadi,

 a + b = 4
2a - b = 3


Eliminasi


a + b  = 4
2a - b = 3
------------- +
      3a = 7
        a = 7/3

Subtitusi

   a + b = 4
7/3 + b = 4    (x3)
 7 + 3b = 12
       3b = 5
         b = 5/3

misal,

√x = a              √y = b
√x = 7/3           √y = 5/3
  x = (7/3)²         y = (5/3)²
  x = 49/9           y = 25/9

HP = {x, y}
      = {49/9, 25/9}

Semoga Membantu!!!
    




13. menyelesaikan sistem persamaan linear dua variabel dengan subtitusi


Contoh :
3x - y = 26 dan x + 4y = 0

Penyelesaian :
x + 4y = 0
x = -4y

3x - y = 26
3(-4y) - y = 26
-12y - y = 26
-13y = 26
y = -2

Tadi di atas disebutkan bahwa
x = -4y
x = -4(-2)
x = 8

Jadi stubtitusi adalah penyelesaian sistem variabel dengan mengganti variabel 1 dengan variabel lain sehingga terbentuk pernyataan dalam bentuk persamaan linear 1 variabel

14. hal-hal apa saja yang perlu diperhatikan dalam menentukan selesaian dari suatu persamaan linear dua variabel?


variabel dan sukunya


15. rangkuman dari menentukan nilai variabel pada sistem persamaan linear dua variabel dalam masalah kontekstual​


Penjelasan dengan langkah-langkah:

Sistem persamaan linear Dua Variabel (SPLDV) merupakan suatu sistem yang terdiri atas dua persamaan linier yang mempunyai dua variabel. Dalam sebuah Sistem Persamaan Linear Dua Variabel (SPLDV) biasanya melibatkan dua persamaan dengan dua variabel. ... Variabel adalah nilai yang dapat berubah – ubah.

Semoga membantu : )


16. contoh soal penyelesaian sistem pertidaksamaan linear dua variabel


2x+y=4 3x+5 perasamaan dua linear

17. Tentukan selesaian dari sistem persamaan linear dua variabel berikut ini


Mapel : Matematika
Materi : SPLDV
Kelas : 8
Pembahasan;

a) [tex] [\frac{1}{3}x- \frac{2}{3}y=-4]x3 \\ x-2y=-12.....(1) \\ \\ \frac{1}{2} x + \frac{1}{5}y =6]x10 \\ [tex]x-2y=-12....(2)[/tex]

Eliminasi (1) dan (2)
 \\ 5x+2y=60 \\ ------+ \\ 6x=48 \\ x=8 \\ \\ 8-2y=-12 \\ y=10[/tex]

18. Bagaimana cara menentukan himpunan penyelesaian sistem persamaan linear dua variabeltolong dijawab kak ​


Jawab:

Metode yang digunakan ada 3 yaitu Eliminasi, Distribusi,dan Grafik

Caranya Eliminasi

Menghilangkan salah satu variabel untuk menentukan nilai variabel satunya lagi.

Caranya Distribusi

Menyalurkan variabel ke salah satu variabelnya

Caranya Grafik

Perumpamaan jika

x = 0, maka y = _ [ 0,y ]

y = 0, maka x = _ [ x,0 ]

Maka kedua titiknya dihubungkan karena dalam bentuk persamaan pada kedua persamaan.

Semoga bisa membantu


19. menyelesaikan sistem persamaan linear dua variabel dengan subtitusi


Substitusi merupakan salah satu metode dlm penyelesaian SPLDV.

Dlam substitusi, kamu harus menentukan yg mana yg dihilangkan, itu yg menjadi patokan kamu.
Klo misalnya kamu mau hilangin y, masukan ke bentuk
[tex]y = mx + c[/tex]
m=gradien
c=angkanya

Kamu gantikan y pada variable yg tdk kamu ubah dengan mx+c.
kamu bakal ketemu x-nya

Setelah menemukan x, masukan x ke dlm bentuk persamaan yg kamu ubah dlm bentuk yg diatas.
kamu akan temukan nilai y, dan kamu menyelesaikannya.

Happy Trying☺

20. contoh soal sistem persamaan linear dua variabel​


itu contoh soal nya.....


21. diberikan sistem persamaan linear dua variabel 3x-y=10,x-2y=0,tentukan selesaian dari sistem persamaan linear dua variabel


3x-y=10

x-2y=0

Dieliminasi

3x-y=10

3x-6y=0

5y=10

y=2

Disubstitusi

x-2y=0

x-2(2)=0

x-4=0

x=4

Penyelesaian x=4 y=2


22. sistem persamaan linear dua variabel menyelesaikan menggunakan berapa cara? ​


Jawaban:

Mengganti setiap besaran yang ada di masalah tersebut dengan variabel (biasanya dilambangkan dengan huruf atau simbol).

Mengganti setiap besaran yang ada di masalah tersebut dengan variabel (biasanya dilambangkan dengan huruf atau simbol).Membuat model Matematika dari masalah tersebut. Model Matematika ini dirumuskan mengikuti bentuk umum SPLDV.

Mengganti setiap besaran yang ada di masalah tersebut dengan variabel (biasanya dilambangkan dengan huruf atau simbol).Membuat model Matematika dari masalah tersebut. Model Matematika ini dirumuskan mengikuti bentuk umum SPLDV.Mencari solusi dari model permasalahan tersebut dengan menggunakan metode penyelesaian SPLDV.

Maaf kalo salah


23. himpunan penyelesaian sistem persamaan linear dua variabel adalah​


Jawaban:

HP SPLDV adalah anggota anggota yg memenuhi hasildari PLDV.

contohnya:

tuliskab HP dari persamaan 3x+y, dengan x€{0,1,2}

jawab:

HP={0,6},{3,3},{6,0}

Penjelasan dengan langkah-langkah:

PLDV adalah persamaan yg memiliki 2 variabel dan pangkat variabel yang tertinggi adalah 1(variabelnya yg tertinggi adalah 1)

metode penyelesaian SPLDV

metode substitusi

metode eliminasi

metode campuran

metode grafik

△▶△▶△▶△▶

*maaf bila salah. jika ada yg ingin ditanyakan silahkan tanya pd kolom komentar. semoga bermanfaatʕ•ٹ•ʔ

#SejutaPohon


24. Syarat sebuah sistem persamaan linear dua variabel memiliki selesaian ?


Persamaan linear dua variabel akan memiliki penyelesaian jika terdapat minimal dua persamaan yang membuat dua variabel tersebut.

25. berikan 4 soal sistem persamaan linear dua variabel (SPLDV) beserta penyelesaiannya


Berikan 4 soal sistem persamaan linear dua variabel (SPLDV) beserta penyelesaiannya. Penyelesaian sistem persamaan linear dua variabel dapat dilakukan dengan beberapa cara yaitu metode substitusi, metode eliminasi, gabungan metode eliminasi substitusi dan metode grafik

Pembahasan

Contoh soal sistem persamaan linier dua variabel

Contoh 1

Tentukan himpunan penyelesaian dari sistem persamaan linear dua variabel berikut

2x + y = 7

3x – 2y = 21

Jawab

2x + y = 7    |×2| 4x + 2y = 14

3x – 2y = 21 |×1| 3x – 2y = 21

                          ------------------ +

                            7x      = 35

                              x      = [tex]\frac{35}{7}[/tex]

                              x      = 5

2x + y = 7

2(5) + y = 7

10 + y = 7

y = 7 – 10

y = –3  

Jadi himpunan penyelesaiannya adalah  

HP = {(5, –3)}

Contoh 2

Diketahui sistem persamaan linear dua variabel berikut ini

x – 6y = 4

3x + 2y = –8

Nilai dari x + y adalah ….

Jawab

x – 6y = 4    |×3| 3x – 18y = 12

3x + 2y = –8 |×1| 3x + 2y = –8

                            ----------------- –

                              –20y = 20

                                     y = [tex]\frac{20}{-20}[/tex]

                                     y = –1

x – 6y = 4

x – 6(–1) = 4

x + 6 = 4

x = 4 – 6

x = –2

Jadi nilai dari x + y adalah

= x + y

= –2 + (–1)

= –3

Contoh 3

Harga 2 buku dan 3 pensil adalah Rp8.500,00 sedangkan harga 5 pensil dan sebuah buku adalah Rp9.500,00. Berapa harga masing-masing sebuah buku dan sebuah pensil tersebut?

Jawab

Misal

x = harga 1 buku y = harga 1 pensil

maka persamaan linear dua variabelnya adalah

2x + 3y = 8.500 dan 5y + x = 9.500

Kita eliminasi kedua persamaan tersebut

2x + 3y = 8.500 |×1| 2x + 3y = 8.500

x + 5y = 9.500  |×2| 2x + 10y = 19.000

                               ----------------------------  –

                                      –7y = –10.500

                                          y =  [tex]\frac{-10.500}{-7}[/tex]

                                          y = 1.500

x + 5y = 9.500

x + 5(1.500) = 9.500

x + 7.500 = 9.500

x = 9.500 – 7.500

x = 2.000

Jadi

Harga 1 buku (x) = Rp2.000,00 Harga 1 pensil (y) = Rp1.500,00

Contoh 4

Lima tahun yang lalu umur Budi 7 kali umur Ayu, sedangkan 20 tahun yang akan datang umur Budi 2 kali umur Ayu. Berapakah umur Ayu sekarang?

Jawab

Misal  

x = umur Ayu y = umur Budi

Lima tahun yang lalu umur Budi 7 kali umur Ayu

(y – 5) = 7(x – 5)

y – 5 = 7x – 35

y = 7x – 35 + 5

y = 7x – 30

20 tahun yang akan datang umur Budi 2 kali umur Ayu

(y + 20) = 2(x + 20)

(7x – 30) + 20 = 2x + 40

7x – 10 = 2x + 40

7x – 2x = 40 + 10

5x = 50

x = [tex]\frac{50}{5}[/tex]

x = 10

Jadi umur Ayu sekarang adalah 10 tahun

Pelajari lebih lanjut      

Contoh soal lain tentang sistem persamaan linear dua variabel

Sebuah perusahaan surat kabar memiliki dua mesin cetak: brainly.co.id/tugas/20779477 Umur Ibu dan Anak: brainly.co.id/tugas/7317841 Upah tukang kebun dan tenaga pemebrsih: brainly.co.id/tugas/1069266

------------------------------------------------    

Detil Jawaban      

Kelas : 8

Mapel : Matematika

Kategori : Sistem Persamaan Linear Dua Variabel

Kode : 8.2.5

#AyoBelajar


26. contoh dan penyelesaiannya soal persamaan linear dua variabel


contoh soal
3x+2y=7
x=bilangan cacah

caranya:
x=1
3(1)+2y=7
3+2y=7
2y=7-3
2y=4
y=4/2
y=2

27. 1. suatu sistem/ kumpulan dua persamaan linear dua variabel berpangkat satu dan saling berkaitan sehingga terdapat satu penyelesaian disebut...a. sistem pertidaksamaan linear dua variabelb. sistem persamaan linear tiga variabelc. sistem persamaan linear dua variabeld. sistem persamaan kuadrate. sistem pertidaksamaan linear tiga variabel2. berikut yang bukan merupakan cara menyelesaikan sebuah persamaan linear adalah..a. metode eliminasib. metode substitusic. metode matrikd. metode eliminasi substitusie. metode determinan​


Jawaban:

c. sistem persamaan linear dua variabel d.metode eliminasi substitusi

ini Jawabannya ya kak semoga bermanfaat;)

#backtoschool2020


28. cara menentukan daerah penyelesaian sistem pertidaksamaan linear dua variabel?​


Jawaban:

Caranyaa angka didalam tiap daerah di tes dan dimasukan ke PLDV nya kalau benar maka itula daerah penyelesaiannya


29. Grafik penyelesaian sistem persamaan linear dua variabel 2x-


Penjelasan dengan langkah-langkah:

soalnya tidak lengkap gimana cara mengerjakannya


30. selesaikan sistem persamaan linear dua variabel


kali silang aja..
1> 3x + 2y = 10xy
2> 2x + y = 8xy
           y = 8xy - 2x , masukin persamaan ini ke persamaan 1
akan didapat..
3x + 16xy - 4x = 10xy
x = 6 xy > coret x
y = 1/6

udah dapet y, sekarang y masukin ke persamaan 2 
akan didapat..
2x + 1/6 = 8x/6 ( kali dengan 6)
12x + 1 = 8x
4x = -1
x= -1/4Pakai permisalan boleh
misal 1/x=a dan 1/y=b
maka :
2a+3b=10
a+2b=8

kita pakai substitusi aja, eliminasi juga bisa sih.
a=8-2b
masukkan ke persamaan salahsatunya
2a+3b=10
2(8-2b)+3b=10
16-4b+3b=10
-b=-6
b=6
b=1/y
6=1/y
y=1/6
sekarang cari yg a
2a+3b=10
2a+3(6)=10
2a+18=10
2a=-8
a=-4
a=1/x
-4=1/x
x= - 1/4



31. bagai mana soal sistem persamaan linear dan dua variabel


x+3=8
x diganti 5
5+3=8
8-3=5

32. hal hal apa saja yang perlu diperhatikan dalam menentukan selesaian dari suatu persamaan linear dua variabel???


yg perlu diperhatikan adalah metode apakah yg kamu gunakan dalam menjawab nya . metode metode dalam pldv ada metode subsitusi , eliminasi , grafik .tapi menurut saya metode yg paling simple digunakan adalah metode substitusi ( menempatkan salah satu persamaan pada persamaan lain nya ). dan metode eliminasi ( metode menghilangkan salah satu variable).

kalau metode substitusi:
Contoh
Tentukan himpunan penyelesaian dari sistem persaman x+y =5 dan x-y=3 dgn metode subatitusi
Jawab :
x+y=5 ... (1)
x-y=3 ....(2)
misalkan persamaan yg akan kaka substitusikan adalah x-y =3 . maka , persamaan itu kita ubah menjadi x=3+y.
》 x+y =5 ...(1)
x-y =3 ...(2)
x = 3+y
Selanjut nya kaka substitusikan atau masukkan x=3+y kepersamaan x+y =5
x+y =5
( 3+y) +y = 5
3+2y = 5
2y = 5-3
2y = 2
y= 1

lalu, kaka substitusikan nilai y = 1 ke salah satu persamaan , maka :
x+y = 5
x+1 =5
x=4

Jadi, Himpunan penyelesaian nya adalah {(4,1)}

Semoga membantu
Jadiin jawaban terbaik yha ... semoga paham yha

33. cari soal cerita tentang sistem persamaan linear dua variabel dengan penyelesaian menggunakan matriks..


seorang wirausaha bakso membuat 2 jenis bakso, yaitu bakso biasa dan bakso super. untuk membuat bakso biasa setiap 5kg daging sapi diberi campuran 3kg sagu. sedangkan untuk bakso super setiap 5kg daging sapi diberi campuran 1kg sagu. persediaan modal untuk daging sapi adalah 15kg dan sagu sebanyak 8kg. jika setiap bakso biasa memperoleh keuntungan Rp. 50.000 dan untuk bakso super Rp. 100.000.

34. Tolong dibantu ya kak, terimakasih..Menentukan himpunan penyelesaian sistem persamaan linear tiga variabel. soal:​


Jawab :

HP = {1, -1, 2}

Penjelasan dengan langkah-langkah :

Penjelasannya adalah sebagai berikut.


35. Contoh soal Sistem Persamaan linear tiga variabel dengan penyelesaiannya


seorang penjual beras mencampur tiga jenis beras.campuran beras pertma terdiri atas 1 kg jenis A. 2 kg jenis B dan 3 kg jenis C di jual dengan harga RP 19.500.00. campuran beras kedua terdiri dari 2 kg jenis A dan 3 kg jenis B di jual dengan harga RP 19.000.00 campuran beras ketiga terdiri atas 1 kg jenis B dan 1 kg jenis C di jual dengan harga RP 6.250.00.harga beras jenis manakah yg pling mhl?.

misal

I. 1 A + 2B + 3C = 19.500.00
II. 2 B + 3 C = 19.000
III. 1 B + 1 C = 6. 250.00

A 1 + 2

A + 2 B + 3 C = 19.500 [ × 2 ] 2 A +4B +6C= 39.000
2 A + 3 B = 19.000 [ × 1 ] 2 A + 3 B = 19.000

Dit: 3 2 4 ?

B + C = 6.250
B + 6 C = 20. 000
--------------------------- -
-5 = 13.75
C = 13.750
----------------
5
C = 2.750

C = 2750
B+ C = 6.250
B+ 2.750= 6250
B=6250-2750
B = 3500

2A + 3 B = 19.000.00
2A + 3 ( 3500 ) = 15.000
Za + 105.00= 19.000
Za+ 19.000-10500
Za= 8500
A= 8500
---------
2
A = 4250

36. bagaimana langkah - langkah menentukan daerah penyelesaian sistem pertidaksamaan linear dua variabel?


caranya adalah diumpamakan salah satunya sama dengan 0
contoh:
2x + 3y ≤ 6
⇒kalo' x = 0, maka y = 2
⇒kalo' y = 0, maka x = 3

37. soal cerita Sistem Persamaan dua linear variabel


Misal : Buku = b dan Penggaris = p
Sinta : 3b + 4p = 10.250
Ratih : 2b + 5p =  9.750
* eliminasi menghilangkan b
3b + 4p = 10.250 |x2
2b + 5p =  9.750  |x3
menjadi,
6b + 8p = 20.500
6b + 15p = 29.250
_______________ -
8p - 15p = 20.500 - 29.250
-7p         = -8750
p            = 1250

* Subtitusi
3b + 4p = 10.250
3b + 4(1250) = 10.250
3b + 5000 = 10.250
3b = 10.250 - 5000
b = 5250/3
b = 1750

Deby 4b + 2p = 4(1750) + 2(1250)
                       = 7000 + 2500
                       = 9500
* jadi, deby harus membayar Rp. 9500

38. soal sistem persamaan linear dua variabel(SPLDV)​


Jawaban:

D

Penjelasan dengan langkah-langkah:

penjelasan udah difoto yaa


39. Himpunan Penyelesaian dari Sistem Persamaan Linear Dua Variabel di bawah adalah ... ​


Jawaban:

himpunan penyeselasaian dari sistem persamaan adalah 11,251


40. himpunan penyelesaian sistem persamaan linear dua variabel adalah​


PROF BRAINLY MASTER

7x + 3y = - 5. x2

5x + 2y = 1 x3

14x + 6y = - 10

15x + 6y =. 3

____________-

- x = - 13

x = 13

5x + 2y = 1

65 + 2y = 1

2y = - 64

y = - 32

HP { 13, -32 } A

⛔ DILARANG NANYA GRATISAN ⛔

Video Terkait

Kategori matematika